Simultaneous analysis of families of sigmoidal
curves: application to bioassay, radioligand
assay, and physiological dose-response curves

Dz Lxan, A., P. J. Munson, anp D. Roosart. Simultaneous analysis of
families of ngmauird curves: application to bioassay, radioligand assay,
and physiological dose-response curves. Am. J. Phynol 235(%): EfT-E102,
1978 or Am. J. Physiol.: Endocyinol. Metab. Gastrointest. Physiol. 4(2):
E97-E102, 1978.—Physiclogical and pharmacological studies of hor-
mones, drugs,mdneumtrnnmttersoﬁengenenteﬁmmuufsimnmdnl
doae-mpome curvea, Optimally efficient data analysis should involve
simultaneous description of all curves, rather than fitting each one
individually. We have developed a general computerized method to
describe the dose-response curves in terms of basal and maximal re-
sponses, ED,,, and curve shape or steepness. This facile method permits
rigorous statistical analysis, provides a basis for pooling of information
from eeparate experiments, and allows one to test which chnmetanstu:
are shared hy various curves.

data analysis; cmeﬁtun;hornonemptors,mdwmunmy neu-

rotransmitters, DNA-RNA hybridization

DOSE-RESPONEE CURVES from bioassays, radio

assays, radicimmunosssays (RIA), and DNA-RNA hy-
bridization are typically smooth, symmetrical, and sig-
. moidal (Sdmped)whenthedoeeupoﬁmyodona
logarithmie scale. Usually, these curves may be equally
- well described by the Gausgian cumulative distribution
(probit analysis) or by a logistic model (15, 29). The

latter has advantages of mathematical simplicity and

has been widely used for bicassay, radicimmunocassay,
and related techniques (2.4 5,7 10 12-14, 20, 27-29,
" 381, 33, .35-37). The general form t.helog'lstlcfuncuon
may be expreased as

a—d

Y= T+ &Je ),+d

whereY:stheruponseX themﬂmucdoee a, the
response when X = 0; d, the response for "

dose;! ¢ is the EDy,, i.e., thedoeeresultmgmampmse

halfwaybetweenaandd;andbiaa“ﬂopefactor”that
determines the steepness of the curve®

! Reversal of the roles of o and d veverses the sign of b, The
parameters ¢ and d may be alternatively definad as the minimum
and the maximum of the response range, respectively. With the
‘initial dafinition (responises at sero and infinite dose, respectively),
b ia always positive. lnthenlm-natiwdoﬁniﬂm.thdpnfb
depends on whether the response is increasing (b positive) or
decreaning (& negative) with incressing dose X.

* The slope factor, b, mmmmwﬂleﬂopeoﬂhelozibloupm
when X is portrayed in terms of natural logarithms

finding of 2 b value
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'Ihsequahonhasbeenuneduthabuisforamlm
of dose-response curves, individually. When two or
done—rssponsecurveshawboenoomtnmted,the
usm!pruchuhasbeentochmetenmeeacboneup—
arately and then to compare the slopes and potencies,
e.§., in terms of the ratios of the EDy.'s. However, this

dwdhm-'td-a;m_ whenX » ¢

d Logit (Y - difla = i/ 100 = b

The stic anal to the Hill
oqutihxmd.g.llnnd binding and ensyms Mﬁw plrlme-'

mbhutheummthmatialh'muthmllmmdmm
However, b cannot be -in the saime thermodynamic tarms
an ny except under very special circumstances. In the proper appli-
uﬂm&ﬂuﬂmmﬁmxmh&oeupndmm
whersas in most tions of the logistic equation (including
thoee in this report), X indicates total ligand concentration (29). The
greater than unity msy indicate positive
mﬁ%ua“dﬂmmmum!wm the
presence of a significant threshold and spare receptors will slevate
the & value (34). Whoﬂnrmmpuwﬂtyuiavolvadislw

point, In another commonly aécurring case, heterogeneity of binding
dtuhr-ﬂnhdlnann..afhuthanﬂt,y Usually (though not
always), the b value measured when ¥ = (o + d)2 will also be lass
than unity. However; extensive simulation studies have indiested
that the b value may be far removed from the true a, (unpublished
observations). Hence, slopes of logit-log plets of RIA's and RRA's
should not be raferred to, nor interpretad as Hill coefficients. Instead,
these should ba simply referred to as b values, or Jogit-log slopes.
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approach does not extract all of the "information” from
the experimental data: to do so0, it is necessary to
analyze all of the curves simultaneously, forcing them
to share certain parameters in common, if warranted
by a priori considerations and by the data (28, 38, 39).
This situation commonly arises in structure—function
studies of hormones, drugs, neurotransmitters: indeed,
whenever a series of chemical analogues are assa

simultaneously. In such cases, we may expect all ana-

logues to share some parameters (e.g., the basal re- -
_sponse, a); some analogues may share additional pa-

rameters (e.g., all full agonists will have the same
maximal responses, d), whereas other subgroups of
compounds may share additional parameters {e.g., all

antagonists might have the same slope factor, b) In.

general, the parameter ¢ will differ for each dose-
curve.

TeEponse
Use of "constrained” curve fitting not only prcmdu_

more information; it may also be essential in order to
‘permit the curve-fitting routine to provide reasonable
estimates of parameters. Some.of the curves may fail to
‘provide any information about one or more of the
parameters of the logistic equation if the curves do not
span the full range of responses. For instance, some
curves (for very weak agonists) may provide informa-
tion regarding a, but none regarding b, ¢, or d. Simi-
larly, for very potent preparations (e.g., superagonists),
we may attain a maximal response at the lowest dose
tested in a particular assay. This would provide infor-
mation solely about d. Other preparations, assayed in
the vicinity of their EDy,'s, may provide information
regarding b and ¢, but not e ord.

In the present report, we describe the development
and application of a computer program for simultaneous
curve fitting of families of dose-response curves based
on the four-parameter logistic equation, which permits
us to constrain the solution so that curves share desired
common parameters. This program, written in extended
BASIC, is readily adaptable to minicomputers and
desk-top calculators, does not require the large scale
computer facilities necessary for currently available
general purpose modeling packages (3, 21, 34) and is
intended for the biochemical leboratory performing
bioassays and radioligand assays. The program provides.
automated statistical analyses to evaluate "goodness of
fit” and to test the hypothesis that certain curves share

. selected parameters in common. We shall briefly de-
scribe the mathematical and statistical bases for this
program and illustrate its use with several representa-
tive examples.

METHODS

We employ a general nonlinear, 1east-squam curve-
fitting routine® using the Gauss-Newton algorithm as

3 For purposes of curve fitting, we reparameterize the logistic
oyquation to utilize ¢’ = Ine) (ef. AppenduSofref 28). This
preventa ¢ from becoming negative, widens the range of conver-
gence, andexplmtnhemrlyﬂanm(watleutsymem
error distribution for ¢’. Further, this simplifies calculation of
standard errors and confidence limits for the relative potency (17} of
two preparations.
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modified by Marquardt and Levenberg (18, 22). Selec-
tion of shared parameters is made mteractwely‘ and
the general curve fitting mode! ia automatically modi-
fied to accommmodate the constrainta. In cases in which
there is nonuniformity of variance, the program permits
use of weighting, by use of either a linear, parabohc. or
power-function relationship between the variance (o)
of Y and the Y level.>* Goodness of fit is evaluated on
the basis of the residual variance, by use of the “extra
sum of squares principle,” which is only approximate
when applied to nonlinear models (11). Any constraint
{parameter sharing) will increase the sum of aquares of .
the residuals but will also decrease the effective number
of parameters estimated. If the gain in the number of
degrees of freedom (number of data points minus m.un .
ber of estimated parameters) counterbalances the ga

in the sum of squares of residuals, t.heFtestmllbe
small (around 1), indicating the appropriateness of the
constraints used. Randomness of the residuals (devia-
tions of observed from predicted responses) is tested by
evaluation of the number of "runs” of positive or nega-
tive residuals (1, 11). The data points are expected to be
randomly dist:ibuted ebove and below the fitted curve
if the mode is appropriate. Significant nonrandomness’
of the signs of t.he residuals indicates an inappropriate -
fit.

EXAMPLES

We shall ilustrate the utility and versat:hty of this
approach to data analysis, by means of four examples:
I) RIA estimation of relative potency, in this case of an
iodinated antigen, to obtain a measure of specific activ-
ity; 2) comparison of agonists and antagonists in a
neurotransmitter radio-receptor assay system; 3) in
vitro bicassay of human cherionic gonadotro phin (hCG)
and several of its deglycosylated derivatives; 4) DNA-

RNA hybridization analysis.
1) Radioimmunoassay potency esumatmn A gimple

'ﬂunumberofunmﬂnuﬁmhdﬁm:ﬁmﬂyofm
constrained to have shared parametars will be less than the total
number of parameters if each carve were considered separately.
'ﬂusimthenumberofdeguuofﬁudum(numbuofoher-_
vations minus number of parameters) for the residual variance xnd
narrows the confidence limits for parameters {e.g., potency esti. -
mm’i.pmldedtbatﬂ:eundeﬂymgmodalhm

5 We utilize weights which are inversely pmporhoml to the
predicted variance of the response, Y

'-]}&‘.

-

whers

dyl = gy + @, ¥ + 5, ¥ + gy Y™

TI»wghﬁngwdﬂennﬁ(a.—m)mutimMinnprelmmm
analysis of replicates, as described (30).
Commoley the "within-dose” variance is significantly smaller
than the "between-dose™ variance sround the regression. Accord-
e e ectratn, providod sofftent data ae avallabia to

ient data are avai to'
enisUTe CORVErgence. Odnrwin,nhiludundsmﬂ:lmteofthemﬁi
val variance may be obtained and statistics for selecting among
competing models may be biased. When within-doss and hetween-
do:ndvanmmmpanble then sach observation should be
an
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example of simultaneous fitting of two sigmoidal curves
is shown in Fig. 1, A and B. The potency estimate’ of
labeled luteinizing hormone releasing hormone ('%]-
labeled LHRH) relative to native LHRH was measured
by RIA. The dose-response (bound/total ratio for labeled
hormone or B/T) curve for the labeled hormone tested is
compared to the standard RIA dose-response curve. In
this application, the relative potency is identical with
the specific activity in terms of radioactive counts per
picogram of LHRH. Unconstrained curve fitting for the
labeled ligand resulted in a physically impossible nega-

tive estimate of d. This curve did not extend sufficiently

into the high-dose region because total radicactivity is
limited in practice to approximately 10" cpm per tube.
Constraining both curves to share identical values ofa
and d (Fig. 18) (as would be expected for a valid RIA
system, assuming that nonspecific counts have been
measured correctly) results in a more suitable fit. The
specific activity of *I.labeled LHRH was estimated as
5,344 = 3,584 counts/pg when analyzing each curve
separately, and as 3,251 % 220 counts/pg when using
constraints. Thus, use of constraints has resulted in a
dramatic tenfold reduction in the size of the confidence
limits, when potency is czlculated as the ratio of the
ED,/’s. The curves may also be constrained to share a
common slope b with no significant decrease in the
goodness of fit (Table 1).

2) Radioreceptor assays for neurotransmitters. In
radioligand assays for hormones and neurotransmitters
(acetylcholine, catecholamines, opiates, ete.), it is cus-
tomary to construct dose-response curves for many
analogues. Not uncommonly, these fall into groupe of
agonists And antagonista with eimilar properties, read-
ily apparent by visual inspection of the dose-response
curves. Here, we wish to characterize the ED,, or 1Dy,

T The potency estimate of & test substance relative o & standard
drug is the ratio of eguipotent doses of the test and the reference
substance. There has considerable debate on the applicability
of the relative astimate method to nonparalis] curves (8, 8,
16). In the case of nonparalielism, the horizontal distance between
the two curves on a logarithmic scale and henoe the polency estimate
is variable. For sxample, the potency estimate based on the ratic of
dosss prndudng half-maximal response (EDy) would differ from
those basad on or EDy,.
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716, 1. RIA dove-response curves for native LHRH and ™I-la-
beled LHRH using high affinity antibodies (K = 1.5 x 10'* M™'). Re-
sults are expremed as bound/total ratio for labeled ligand (corrected
for nonspecific binding) versus amount of untabeled hormone (m,
lower horizontal scale) or amount of labeled hormone in excess of
conatant mass of tracer (8, upper horizontal scale), Curves are fitted
either independently (4 ) or subject to constraints: o, = a; = 0, b, =
b, d, = dy (B). Unpublished data, Jean Cote. :

TABLE 1. Statistical analysis for goodness of fit
for various models for Fig. 1

Sign Buns
Parameters Sharad F Tent Curve 1 P a—
_ a.e a.9
None 1.00 § 4
a,d 0.79 4 4
g bd 1.06 [ 3 [
bod,anda=0 087 5 4

The parameters shared between the two curves are indicatad in
the first column. The F tast for the effect of the constraints on the
residuals is indicated in column two. The number of sign runs of the
residuals for sach curve is indicated in columne three and four. The
total number of observations is 7 and € for native LHRH {curve I}
and labeled hormone {curve 2), respectively. For sach curve, the
expectad range (P > 0,05) of the sign runs is indicated in parenthe-
ses. Fig. 1, A and B correspond to linss 1 and 4 of this table. Based
on these statistical tests, we infer that both curves share common
valuss forb and d, ando = 0.

of each agent, ita slope
and objectively identify “families” of agen
tical b values (paralle! curves). Figure 2 showe compet-
itive binding curves for the labeled dopaminergic ago-
nist dihydroergocryptine (("HJDHEC) in the presence of
increasing amounts of unlabeled antagonists (Fig. 24)
and agonists (Fig. 2B). The curves for the antugonists
mﬁ}mbemed' to be parallel (all ¥’s equal)

ithout any significant effect on the goodneas of fit
(Table 2); further, the common slope factor (b) can be
?rtabkequalz,toavalueoflwiﬂmutdeletenmm' effoct

In contrast, each of the four curves for agonists (Fig.
2B) has a slope factor (b) significantly lower than unity: -
0.68 = 0.06, 0.45 = 0.04, 0.40 = 0.03, and 0.40 = 0.08.
We infer that the curves for the agonists are not parallel
because the additional constraint of parallelism results
in a deterioration of goodness of fit, with a significant
increase in the average acatter around the curves (in-
creased F' test value) and a significant nonrandomness
of the residual signs (Table 3). Thig lack of parallelism
for the agonists is mainly due to the first curve (apo-
morphine), which is steeper than the other three curves.
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TABLE 2. Tests for goodness of fit
for various models for Fig. 24
" RunTestafor Curve
Paramaeters Shared FTest 1 2 'y P
i, 10y 3% {2, & 12. 8
ad 1.00 7 [ 5 4
a.b.d 1.57 7 6 5 3
a,d andb=1 1.39 7 6 4 3

Simulteneous unconstrained curve fitting did not converge; there-
fore the Jeast constrained case (o and d shared for all curves) wax
used as a basis for the F tests in column two. The totel number of
observations were 12, 11, 7, 7 for haloperidal (curve 1), chlorproma-
zine (curve 2), phentolamine (curve 3), and propanoclol (curve ),
respectively. For each curve, the axpected range (P > 0.05) of values
of the number of sign runs is indicated in parentheses. The curves
shown in Fig. 24 correspond to line two of this table. The tests
shown were nonsignificant (P > 0.05); therefore, one may infer that
all curves huve a common a. d, and b, and that b = 1.

TABLE 3. Tests for goodness of fit
for various models for Fig. 2B

Run Testa for Curves
Parametars Shared F Test I 2 2 P
3., a.e AR a0
None 1.00 5 7 5 6
Alle, d 2.18 4 ki 5 b
Allo, d, and 1.94 4 7 5 5
b,‘ = b
Alla, d, and 2,16 4 5 -8 3
by = by = b, . .
Alla, b, d 8.88% 3 7 & 3=

The number of observations was 10 for apomorphine (curve 1),
dopamine (curve 2), epinephrine (curve 3), and norepinephrine
(ctirve 4). When all a's, b's, and d’s are set equal, the F test is
significant (P < 0.008), and wome run tests (indicatad by an
asterisk) reach the level of nignificance (P = 9.05). Thus, we rejoct
“ﬁ,?m'i’ that all curves are parailel and share the same limits
a ]

These latter curves may be constrained to be parallel
{same b). Consideration of the nonparallelism of dis-
placement curves for agonists and antagonists may lead
to new insighte into the mechanisms of interaction of
these agents with their specific receptor(s) and permit

DE LEAN, MUNSON, AND RODBA

mnc. 2. Displacement of tritiated dihydroergocryptine [*HIDHEC
from bovine anterior pituitary membrane receptors A: by the an- -
tagonists haloperidol (+), chlorpromazine (), phentalamine () and
propanolol {#) or B: by the agonisia apomorphine (-}, dopamine (a},
{—)epinephrine {w) and (-~ norepinephrine (s). Solid lines represent
fitted curves subject to following constraints: (A ), commona, b, d for
all curves, and (B), common a, d for all curves, common b for epi-
nephrine and norepinephrine. Data of Marc Caron, ref. 6.
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ric. 3. Dose-response curves for human chorionic gonadotropin
thCG, @) and partial agonists NG-hCG (s}, NGAm-hCG (a), on
cyclic adenosine monophosphate (cAMP) production by rat Leydig
cells. Solid lines represent curvas fitted with shared a and b. Data of
William Moyle, ref. 25.

classification of compounds.

3) Biossay of partial agonists. In the bicassay of a
family of agonists and partial agonists, the basal re-
sponse leve] {a) may remain the same but the maximal
response (d)} will be smaller for the partial agonists.
However, the curves may revea! the same "steepness”
(same &). Appropriate evaluation of the potency esti-
mate of the partial agonists can best be obtained by
simultaneous constrained curve fitting. Figure 3 shows
Leydig cell adenosine 3°,5'-¢cyclic monophosphate accu-

‘mulation in response to varying doses of hCG and two

related partial agonists. The curves have been forced to -
share a cormmon a and b. The additional constraint of a
common ¢ (ED.,) does not significantly alter the good-
ﬁssof?tofthe.curm. 'II:’?' thgsethmcurveswould
be nearly superimposab their responses were nor-
malized to 100% of their respective maximum,

4) DNA-RNA hybridization. Whereas parameters b
and ¢ usually reflect intrinsic properties of the system,
parameters a and d often vary between experiments, .
depending on experimental conditions. Simultaneous
curve fitting may be used as an elegant and efficient
method for pooling information from several experi-
ments while minimizing problems of between-experi-
ment variability in some parameters. Figure 4 shows
DNA-RNA hybridization curves for ovalbumin mRNA
purified from chick oviduct and total mRNA from chick
oviducts treated with estrogen. Here the RNA samples
were repeatedly assayed in different experiments with
varying d values (maximum binding capacity). The d




DOSE-RESPONSE CURVE ANALYSIS

1wt 1
Lol imolestitns Fune)
na. 4, Hybndlution to cDNA of purified mRNA for ovalbumin
{0, and of total mRNA from chicks treated with- -estrogens for 4 (a)
or 18 days (o). Each mRNA preparation was assayed in 3 different
experiments. For curve fitting. parameter o was sst at zero and &
was common to all curves. Parameter ¢ was shared between individ-
ual curves for same mRNA preparation. Parameter d (extrapolated
maximurn percentage of initial mRNA associated at infinite time
and concentration) varies between experiments (82 = 7, 58 = 4, 56
* 4, 47 = 4) and was pooled only for curves within the same
experiment. Resulting curves are shown normalized to their respec-
tive d. Data of 5. E. Hurris, ref. 18,

TABLE 4. Analysis of goodness of fit
for various models for Fig. 4

W

Farameters Shared F st Caafidence Level
a=0 1.0
a = 0; and ¢ for a given preparation 1.79 P = 0.25 (NS)
e = 0,b,d, andc for a given prepa-  8.58* P <0.008
ration
a = 0. b, ¢ for a given preparation, 2.18 P= 0.1 (NS

and 4 within the same experi-
ment

Each mRNA preparation was assayed once in three different
experiments for a total of nine curves. Use of constraints was
intanded for pooling curves from the different experiments. The F
* tests for some representative cases are showr together with their
approximate confidance levels. The m tests were not contrib-
utory because of the srnall number of ations (four) per individ-
ual enrve. The curves shown in Fig. £ correspond to line four of this
table. The asterisk indicates statistical significance.

values were pooled for all curves within the same
experiment while constraining the ¢ values {C;,lm) to be
wequal for all curves for the same substance. The addi-
tional constraint of parallelism (common b) did not alter
the goodness of fit. Forcing all the d values to be equal
Signifisant degratation of the goodnass of G (Reble 4.
mgn t tion t e 4).

In Fig. 4, theeztaﬁmeachofthenmemgnﬂcuﬂu
areahownnormalmedtolﬂﬂ%ofﬂmdvalmfﬂrtheir

mtspondmgexpenment

DISCUSSION

The four- logistic equation seerns to appro-
priately describe, within experimental accuracy, most
srmmrtriew) sipmoids) daso-responae curves. Iy thewe
cases in which sigmoidal curves are significantly asym-
metrical, the logistic model could be extended by incor-
poranngoneortwonddmonalqs;met:ypanmm
" (26). For a complex titration curve involving multiple
claspan, of binding sitea with widaly dispasate BN ta,
anemyuaeammmntamofhgistictem'l‘hnhm
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been applied to DNA-RNA hybridization data (23). -

The present program may be used to calculate “par-
allel line potency estimate” for in vivo bicassays, with-
out need for truncation to a central linear ségment or
use of logit transform of the response (17). Truncation
of the response curves results in systematic loss of
information by neglecting the end parts of the curves,
whereas the popular use of the logit-log linear regres-
sion relies on independent estimates of the limiting
values o and d, which cannot be readjusted during the
fitting process. Simultaneous curve fitting with the
four-parameter logistic model uses the available exper-
imental data most efficiently and allows for a greater
flexibility in adjusting to varying experimental condi-
tions.

Waud (37-39) has pioneered the use of computer
analysis of families of dose-response curves. He has
applied simultanecus curve fitting based on a three-
parameter logistic equation for estimating dissociation
constants of agonists and antagonists assayed by phar-
macological "null” methods. The computer programs
that he developed are most appropriate for that specific
purpose. The data analysis that we describe, being more
general, may not be as efficient in such gpecialized cases
because we do not specify any underlying relationship
between the ED,,'s of the curves as for "nul)” methods
applied to the case of competitive antagonists.

The four-parameter logistic equation often represents
a significant improvement over the three-parameter
version because the base-line level (or the background
or the nonspecific level) is included among the parame-
ters instead of being considered as a perfectly known
constant (20, 29). Provision for weighting may be essen-
tial when the range of ohserved responses is quite large,
resulting in unavoidable nonuniformity of variance of
the response metameter (30). Flexibility in the choice of
the shared parameters and multiple statistical tests for
goodness of fit constitute the major advances of the
program described here.

The use of constrained simultaneous curve fitting for
testing the equality of parameters is preferable to
tegting the identity of parameters estimated from
curves fitted individually, The standard errors and
confidence limits of parameter estimates in nonlinear
regression are only approximate, and any conciusion
regarding the equality of corresponding parameters is
only approximate. In contrast, simultaneous con-
stramedcurl;r;ﬁmngpenx:smtmgforeqo?ahtyof
parameters by inspecting consequences of forcing
them to be equal.

Most investigators still use simple graphic methods
and subjective visual curve fitting. Perhaps this has
been justifiable: computerized curve fitting of one curve
at a time may fail to converge on correct values or even
converge at all. An experienced experimentalist will
automatically employ constraints (forcing the curves to
&&rrae dagired characteristion based on an waderdyiag
model or previous results). Now, the present computer
program should retain the advantages of the subjective
methods, but also provide ohjective estimates of the

mlmblhty of the parmnetem.
road o

medmet}wdforeﬁc:entdatamlymsoffamﬂmof
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dose-response curves. The method proved to be ex-
tremely versatile and generally applicable to many
different types of bioassays and binding assays, and

other physiological or

ogical dose-response

curves. The program (ALLFIT) is readily adaptable to
larger desk-top computers and is available on request.

We are grateful to Jean Cote and Mare Caron, Medical Research
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